A neural gas mixture autoregressive network for modelling and forecasting FX time series
نویسندگان
چکیده
Nowadays, there exist various methods for modelling and forecasting foreign exchange (FX) rates including economical models, statistical methods and learning neural networks. Dealing with the problems of nonstationarity and nonlinearity has been a challenge. In this paper, we propose a combined neural model for effectively tackling the problems. The model is termed as neural gas mixture of autoregressive models (NGMAR) and it organises the mixture of autoregressive models in the way of the neural gas. By taking the advantages of dynamic neighbourhood rankings of neural gas and the more appropriate similarity measure of the sum of autocorrelation coefficients, the model is able to effectively model and forecast nonstationary and nonlinear time series. The NGMAR has been tested on several benchmark data sets as well as a variety of FX rates. The experimental results show that the proposed method outperforms significantly other methods, in terms of normalised root mean squared error and correct trend prediction percentage.
منابع مشابه
Self-Organising Mixture autoregressive Model for Non-Stationary Time Series Modelling
Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the ...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملA self-organising mixture autoregressive network for FX time series modelling and prediction
Nowadays a great deal of effort has been made in order to gain advantages in foreign exchange (FX) rates predictions. However, most existing techniques seldom excel the simple random walk model in practical applications. This paper describes a self-organising network formed on the basis of a mixture of adaptive autoregressive models. The proposed network, termed self-organising mixture autoregr...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملWhich Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 135 شماره
صفحات -
تاریخ انتشار 2014